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Introduction

The onset of chaos plays an important role in classical
mod~ls of multiple-photon excitation, dissociation, and ionization. In
particular, the chaotic motion of trajectories in phase space can 1ead
to a diffusive excitation in which the average energy of the driven
system is proportional to the time. The question is whether any aspects
of this stochastic excitation carry over into fully quantum-mechanical
treatments.

Obviously this question is closely tied to that of “quantum
chaos.“ Classically, chaos may be defined unambik~ously by the
existence of at least one positive Lyapunov exponent, implying the
property of “’very sensitive dependence on initial conditions,”
Classically chaotic systems have a continuous component in their power
spectra, as opposed to regular, quasiperiodic motion in which power
spectra consist of discrete, delta-function peaks. Classically chaotic
systems also exhibit decaying correlations.

Quantum systems with discrete energy levels are obviously
quasiperiodic, and therefore cannot exhibit chaos in the classical
sense of a positive Lyapunov exponent. Here we are interested in driven
quantum systems, and in particular in -+oms and molecules in laser
fields, For periodically driven quantum systems it has been established
that (a) the dynamics is recurrer,t,[1] and (b) a quantum localizatl>n
effect can suppress the classical diffusion in phase space end the
consequent stochastic excitation. [2] Since the recurrence time can be
very long and experimentally uninteresting, [3] we wi11 focus our
attention here on whether stochastic excitation is possible in a driven
quantum system. [4]

Tl_wKicked Pendulum— —— .—

7’hckicked pendulum (rotor) is the system with Muniltonian

(1)



and equations of motion

m and # are the pendulum mass and length, o0 is the natural frequency

for small displacements, and T is the period between kicks. For T + O
the force is on continuously and of course the system is integrable
(not chaotic).

From (2) we cbtain by integration the standard m~—.

P = Pn + KsinOn
n+1 (3a)

e = en + Pll+l
n+1 (3b)

where Pn = (T/ml!2)pn,K = (tioT)2,and prfl9n are the values of PO, 0

just before the nQ kick, The advantage of studying such kicked
systems, of course, is that the integration of trajectories is replaced
by the iteration of a discrete mp.

We are interested here In the energy gained by the kicked
pendulum. For large K there is chaos and it is found that the energy,
averaged over classical initial conditions, grows in a diffusive
fashion:

(4)

Such results were first diccussed by @sati, et al. [5] Th?se authors
gave the following jntuitive expla.nntionfor the—rfic of chnos in the
diffusive energy growth, From (3) it follows that

n-l n-l

(r,)



If the ei are treated as uniformly distributed random variables then

the average of (5) o.{erthe Eliis proportional to n. Thus we can see

how chaos can give rise to a linear dependence of average energy on
time (in this case n), i.e., stochastic excitation.

The question naturally arises as to how such results might
carry over into quantum mechanics. It is found in numerical experiments
for the quantum kicked pendulum that the energy expectation value at
first increases and then shows a strong saturation behavior. [5] In
other words, the stochastic excitation and phase-space diffusion
predicted classically is strongly suppressed in the quantum dynamics.

This quantum Suppi-ession of the classical diffusive behavior
was related by Grempel, et al [2] to the Anderson localization of a— —“
particle in a one-dimensional lattice with random site energies. The
basic idea of their elegant argument is that there is a mathematical
correspondence between the kicked pendulum and the one-dimensional
tight-bindingmodel, such
correspond to the integer
former. The random diagonal
to a pseudorandom sequence

that the ‘lattice points of the latter
values of quantized angular momentum in the
:erms of the tight-bindingmodel correspond

T
n
= tan[~(w - En/h)T] = tan[~(uT - n27)], T = fiT/mL?2(6)

in the kicked pendulum. That is, if T is an irrational multiple of 47
then the sequence {Tn} is effectively random, having decaying

correlations and a broadband pcwer spectrum. This pseudorandom sequence
arises from the nature of the discrete energy spectrum of the (quantum)
kicked pendulum, and shows that the Anderson-like localization in phase
space is a quantum effect,

Thus at least some features of classical chaos must be
mitigated by quantum mechanics, However, it should be noted that the
assumption of periodic kicking is very important here, For
guasiperiodic kicking, for instance, it is found that diffusive energy
growth can occur over a very long time interval without any evidence of
quantum suppression. [6,7] In this connection it has been found
experimentally that Rydberg hydrogen atoms are less stable against
ionization in two-frequency microwave fields than in single-frequency
fields. [8]

Classical Models of Multir)le-PhotollExcitation C@ Dissoclntion——

The stochastic excitation of the kick~d pcnclulumresults
from resrm.nnccovcrlnp [4,!3,10]and t}~conset of widcsprend chnos, The
concept of rcsorumcc overlap is espccinlly useful for driven systems
because the driving frequency can probe the various clnssical nonl!ncar
rcsonnnces,Resonance ovcrlnp ideas hnve been applied in classicnl
models of infrared multiple-photon dissociation by Jones and Percival



.

[11] and Calvao, et al. [12] Wchavealso analyzed a classical model of
multiple-photon excitation ti=t is able to account for tha experimental
observation that the number of photons absorbed by a polyatomic
molecule is determined primarily by the fluence of the laser pulse and
not the intensity. [13] More recently we have shown that certain

model-dependent features are removed when rotations are taken into
account in this classical model. [14]

There are obvious questions. How reliable are the classical
models? How. if at all. does the classical chaos manifest itself in a
fully quantum-mechanical description of these driven systems? Is
stochastic excitation possible in driven quantum systems? We do not yet
have complete
attention next
a sinusoidal
model.

answers to these questions. We therefore turn our
to a simple but fairly realistic model of a molecule in
field, and address these questions for this specific

The Driven Morse Oscillator.— —.

We consider the system with Hamiltonian

H = p2/2m + D(l - e--)2 --~cosuLt (7)

D and a are the dissociation energy and range parameter, respectively,
of the Morse potential, and d is the dipole gradient. Near the bottom
of the well we have approximately harmonic motion with frequency U. =

(2.k2/m)l’2. We write the equations of motion in the scaled form

d%d72 = - (4/B2)(c-x - e-n) + 2Kcospr (8)

where T = (DB%) t, X = ax, p = fNJL/DB2,K = dEL/aDB2, and the

dimensionless parameter B = (fi2a2/2mD) 1’2. We use parameters
corresponding to the HF molecule,
of the Morse potential, In these
equation for the driven Morse oscil,

ia#/aT = - a2~/ax2 + B-2

for which there are 24 bound states
scaled variables the Schriidinger
utor is

1 - c-x)+ - Kxcos(pT)$ (9)

The first questim concerns the comparison of the clnssical
m-idqunntum theories of the driven Morse oscillator. This question Wus
addressed some time ago by Walker n.ndPreston, [15] and their results



have often been invoked to justify classical models of multiple-photon
excitation. Basically their conclusions were that the classical theory
is fairly reliable for the scale and gross features of things like
average energy absorbed, but that it is not very reliable near
multiphoton resonances. We have recently extended this investigation to
include the possibility of dissociation; our approach is to solve the
partial differential equation (9) numerically without using a
basis-state expansion for $. [16] Our results corroborate ti~ose of
Walker and Preston, but also reveal that the classical and quantum
predictions mariadiffer substantially near ~gher-order — classical
nonlinear resonances.

To be more specific, let us note that for the Mc~se
oscillator a clasc:cal resonance occurs when the laser frequency

‘L
satisfies

(lo)

where E is the oscillator energy, u(J) = O.(l - uoJ/2.D),and N =

1,2,3... We find that, near such a classical resonance withN > 1, the
classical theory typically predicts a considerably lower threshold
field strength for dissociation than the quantum theory. Similarly near
a q~~antummultiphoton resonance the classical theory typically predicts
a considerably higher threshold than the quantum theory, Near a
classical N = 1 resonance or a quantum single-photon resonance, the
classical theory seems fairly reliable, and in fact the quantum
threshold for dissociation may be predicted fairly accurately using
Chirikov’s resonance overlap criterion without taking higher-order
resonances into account. [16]

The second question is whether classical chaos manifests
itself in any way in the quantum theory. We prefer to phrase the
question somewhat differently: how, if at all, does the class~cal
resonance overla~ manifest itself quantum mechanically? The reason for
this preference Is that the pre-dissociation dynamics is transient and
it is not clear to us how to rigorously define ‘“transientclmos.” (The
definition of the Lyapunov exponents involves the long-time system
dynamics.) On the other hand It iu clear jn the classical dynamics thut
resonance overlnp is necessary for the onset of dissociatim, and we
have already remarked that the dissociation threshold may be predicted
fairly well using the resonance overlap crtterion,

Now in the clussical theory the width of each N-resonance
txrns out to be proportional to the square root of the electric field
strength. This is n well-known consequetlceof the fact tht.tta driven
one-dimensional system may be approximated by the pe~ldulumsystem near
an isolated resomnce. Based on scmiclasslcul quantizati-m ideas, then,
we would be led to expect that the number of quantum levuls that au.— —
stronrzly coupled b~ plied field should be pror)ortiona~o the—— .
squn~’eroot of the electric flc!d strcn@h_.

——
That iS,— . —. —- —— the number of

quantum levels mixed by the ficlclin the clnssicnl rcson:~nceovcrlnp



regime, An, should be proportioml to q. We have found this

prediction to hold up quite weil in our numerical experiments with the
driven Morse oscillator. We have also provided a heuristic explanation
based onllabi splittings of the unperturbed levels. [16]

Of course it should not be surprising that the number of
levels mixed by the field should increase with the field strength.
Based on this result, we perhaps have a qualitatitive understanding of
how the classical resonance overlap translates into the quantum
description. Specifically, & overlap ~ classical resonance zones
corresponds ~ the mixing OJ guantum ener~ levels. Classia~

— results in diffusive motion
.—

resonance overlap in phase space and
dissociation. Quantum mechanically, it is the spread of population with
increasing field strength that gives rise tc dissociation.

The pre-disscociation quantum dynamics is of course
quasiperiodic. However, if many (discrete) levels are mixed by the
field the dynamics can be quite complicated. perhaps enough so to
justify statistical assumptions about the laser-moleculedynamics, For
instance, the dynamics of a quasiperiodically kicked two-level atom is
quasiperiodic, but it can nevertheless be ergodic on the Bloch sphere.
[7] Furthermore the autocorrelation of the state vector canbe regarded
as a decaying function of time for practical purposes, with recurrences
occurring only on long time scales. Such non-chaotic but “complicated”
behavior is reminiscent of Slater’s theory of unimolecular reactions,
which invokes a large number of incommensurate frequencies to derive
certain “statistical” features of quasiperiodic dynamics. [17]

In other words, quantum effects can certainly suppress the
degree of chaotic behavior possible classically, but this does not rule
out the possibility that the evolution of the state vector may proceed
in a very complicated way, perhaps allowing for effectively statistical
behavior that classically can be attributed to chaos. From this point
of view it is not surprising that “stoclmstic” excitation
in quantum systems

is possible
with guasiperiodic driving, [6] because a driving

force made up of just a few incommensurate frequencies can act
effectively as a “stochastic” force. [7] For such purposes quantum
chaos in the rigorous sense may be impos~ible but also unnecessary.
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